this post was submitted on 23 Oct 2023
170 points (93.8% liked)
Futurology
1856 readers
66 users here now
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
How big will the chargers have to be to push that much energy that fast?
you could understand it as: the technology has the capacity to receive power that fast without breaking or catching fire
They don't need to be big.
The physics of electrical conduction mean that you can't cram thousands of watts of power down any given wire without issue. This is why appliance cords are thicker than phone charging cords.
Pushing enough electrons to drive a car a thousand km through a wire in under 10 minutes is going to take a THICCC cable.
That's not completely accurate. The limiting factor is the resistive heating of the cable, relative to the cable's ability to shed that heat. If heat can't leave the cable faster than it is being added, it will eventually melt or burn through the insulation.
If you wrap the cable strands around a cooling tube, you can use water, oil, or a refrigerant to carry away the heat and push a lot more power through a similar sized cable.
Large underground transmission lines have used such methods.
It may be that the charging station will need to actively cool its cables , and the vehicle's air conditioning system might need a second evaporator coil to actively cool the battery and charging circuitry. But it's certainly possible to deliver that amount of power in that short a time frame, without having to resort to "THICCC" cables.
A cable with integrated cooling pipes would be pretty THICC
Probably about as THICC as the fuel hose at a gas pump.
The cables that power trams and electric buses aren't that thick.
Not to mention some serious electronics...