No for an orthogonal projection, because literally every point in the plane centered at H and normal to (AH) (so dihedrally perpendicular to the plane given in the problem) could potentially be P. In other words, it could project to H, or a point off of P perpendicularly to (AH)
You don't really need math for that one, it's just spacial reasoning, which you can't really directly teach. I suppose just the concept of solid angle vs. dihedral angle vs. face angle would be good for everyone to know. To formally prove it, it seems like you'd need linear algebra, which they don't usually teach in high school anyway.
Now, if you can use oblique projections as well, it's pretty trivial to find one that's "tilted" such that any point not already in the plane maps to a given H - the projection can proceed along any set of parallel lines through the space, and there's always a line between any point X and H. Mathematically, you use the fact that X-H must be in the kernel space of the projection, and the standard formula for constructing a projection operator from a basis complementary to the kernel space and one in the plane it projects to.