this post was submitted on 28 Apr 2025
1772 points (95.9% liked)
Microblog Memes
7565 readers
1577 users here now
A place to share screenshots of Microblog posts, whether from Mastodon, tumblr, ~~Twitter~~ X, KBin, Threads or elsewhere.
Created as an evolution of White People Twitter and other tweet-capture subreddits.
Rules:
- Please put at least one word relevant to the post in the post title.
- Be nice.
- No advertising, brand promotion or guerilla marketing.
- Posters are encouraged to link to the toot or tweet etc in the description of posts.
Related communities:
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
If you're describing nearly free and unlimited electricity as a problem, you may want to reconsider some things.
It's a very capitalist way of thinking about the problem, but what "negative prices" actually means in this case is that the grid is over-energised. That's a genuine engineering issue which would take considerable effort to deal with without exploding transformers or setting fire to power stations
Home owned windmills, solar panels and battery storage solves that.
Edit: Look at this awesome diagram of how it's done for a hybrid setup that's about $400 on Amazon.
PIKASOLA Wind Turbine Generator 12V 400W with a 30A Hybrid Charge Controller. As Solar and Wind Charge Controller which can Add Max 500W Solar Panel for 12V Battery.
Home owned windmills are almost a total waste. Its surprising how little electricity they generate especially given how much the cost to buy and install. Some real numbers. A 400w can cost almost $18k to buy and install. A 410w solar solar panel is about $250 + $3k of supporting electronics and parts. And that same $3k can support 10+ more panels. I looked into it myself really wanted it to be worth it for home, but it just isn't. Now utility grade wind? Absolutely worth it. You need absolutely giant windmills with massive towers, but once you have those, you can make a LOT of electricity very cost effectively.
Solar panels worth it? Yes. Absolutely.
Batteries, not quite there yet for most folks. Batteries are really expensive, and don't hold very much electricity $10k-$15k can get you a few hours of light or moderate home use capacity. For folks with really expensive electricity rates or very unreliable power this can be worth it financially, but for most every else. Cheaper chemistry batteries are finally starting to be produced (Sodium Ion), but we're right at the beginning of these and there not really any consumer products for home made from these yet.
Yeah, right now end of life EV batteries are great for making your own power storage but that's a level of diy beyond what 95% of people are willing or able to do
What's infuriating is that we had electric cars before ICE powered cars. 1899. If we would've been investing money and effort into research for battery technology since then, we wouldn't have this problem. Salt batteries, solid state batteries, and other promising tech is in it's infancy because we just started to take this seriously as a society like 10 years ago.
Better late than never but it grinds my gears that the best argument against solar and wind is power storage requirements due to unpredictable power generation. Like this is an extremely solvable problem.
End of life EV batteries are great for grid-scale operators doing power storage, but I highly recommend against homeowners use them this way. Not just because they are complex DIY projects as you point out, but because the EV batteries that are aging out of car use are NMC chemistry. These are great for high density power storage, which you want in a car, but they are susceptible to thermal runaway if they get too hot. The original Tesla Powerwall and Powerwall 2 also used these same chemistry batteries. I wouldn't want these in my house. However, in a utility grid scale? Sure, they won't be anywhere near people so in the unlikely event they do catch fire its a property problem, not a lost human life problem.
Sodium ion batteries are going to be the solution. 18650 packs are already out and perform economically. Since the molecules are so much bigger, energy density is only like 60% of lithium based solutions, but they have a very wide temperature range and are incredibly more inert and safe and density isn't a problem for bulk energy storage.
The hurdle to overcome in inverters dealing with the very wide voltage span and bespoke charging ICs, but definitely possible and within 5 years will probably become a lithium iron phosphate competitor.
"put the excess energy into batteries" is an idea, and is already pretty much what is done, but the large scale implementation still requires a lot of time, effort, and expense.
How, exactly, does that solve anything? It's not like we can add some kind of magic automatic residential cutoff system (that would just make it worse) and residential distribution is already the problem! Residential solar is awesome (tho home batteries are largely elon propaganda...) but they only contribute to the above issue, not solve it. There are ways of addressing it, but they're complicated and unglamorous.
I don't see why home batteries are propaganda. Those prices are plummeting and they have decent payback times in some markets.
The reasons for getting solar is the same reasons for getting batteries.
Of course we can. They're called Microgrid Interconnection Devices (MIDs).
Microgrids that can disconnect from the utility at appropriate times may in fact make it better. If homeowners responded to utility alerts of high demand and opted to disconnect from the grid during those times while still having power, that would just make grid operators and home owners happier.
Microgrids are the solution!
While residential BESSs are largely Tesla based, they are absolutely key in the energy transition from fossil- to renewables-based power sources.
How?
Which ways?
In no home outside of fringe uses are any lights 12vdc, with the exception of maybe led strip lights for undercabs. They're all designed for 120vac. That lightbulb in the diagram is an e37/medium base for 120vac.
Couldn't solar farms just strategically disconnect some of their panels from the grid to avoid that? Solar panels are always collecting energy, but if you disconnect them that energy just goes into making them a bit warmer rather than overloading the grid.
You can have your own batteries as well. If those then get overloaded, disconnect.
Nothing an open/close gate couldn’t fix. The real problem is how overly complicated we feel we need to make things.
This is some real "basic biology" level thinking here. Even if it were as simple as "Pull the lever Krunk!" then you've just turned all that solar infrastructure into junk for the majority of the time that we need power.
People use the vast majority of electricity in a day in the afternoon and at night - times that are noticeably after the peak solar production time. So you have all that energy going into the system with nowhere to go because battery technology and infrastructure isn't there, and then no energy to fulfill the peak demand. This is an issue nuclear runs into as well because a nuclear plant is either on or off and isn't capable of scaling its power to the current demand.
There are times where power companies have to pay industrial manufacturing facilities to run their most energy consuming machines just to bleed extra energy out of the grid to keep it from overloading and turning into a multi-million dollar disaster that could take years to get people back on the grid.
Sorry for the naive question, but is it not possible to send the excess electricity to the ground (in the electrical sense)?
To effectively waste electric power like that would take quite a bit of effort. It would be easier to make a giant heater that heats up air. But that would of course also be absurd. Just turn off the wind turbines etc. to reduce power generation.
It would definitely need to be ground in a literal sense.
And even the earth has its limits. Soil is only so conductive, pump enough energy into it and you'll turn it to glass (which won't conduct anymore).
Oh, look! A challenge. And a business opportunity! Just get a mortgage, buy some land in the middle of nowhere and make a reverse hydro plant.
Oh, I forgot. Banks don't loan money for stuff not already existing or net-harmful hyped-up bullshit like AI and crypto.
In fairness, capitalist expansion is predicated on generating and reinvesting profit. If you build an array of solar panels and generate a revenue less than the installation+maintenance cost of the panels, you don't have any more money to buy new panels and expand the grid.
That is, under a privatized system, anyway. If you're a public utility and your goal is to meet a demand quota rather than raise revenue for the next round of expansion, profit isn't your concern. You're looking for the lowest possible installation/maintenance/replacement cost over the lifetime of the system, not the high margins per unit installed.
Incidentally, this is why vertically integrated private firms that consider electricity an expense rather than a profit center have been aggressively rolling out their own privately managed solar/wind arrays. When the concern is minimizing cost rather than maximizing revenue, and you can adjust your rate of consumption to match the peak productive capacity of your grid, then solar/wind is incredibly efficient.
thats why Westinghouse had to crush Nikolai Tesla. you can't meter wireless power.
It's how capitalists think about land, water, air, etc.
... And violently attacking people by depriving them of these needs.