antangil

joined 1 year ago
[–] antangil@lemmy.world 11 points 1 day ago

The reason I am generally skeptical of the technology is the same reason I’m not going to try to give you a definition.

I’ve never seen it solve a problem or be proposed as a reasonable solution to a problem. What happens instead is that someone says “could we do BLOCKCHAIN for this, it’ll make it way more modern” and the subset of people that want to look really forward-leaning and cool say “YEAH”. If that subset of people is loud enough, a lot of money gets spent and a bunch of implementers have to figure out how to jam in something they can say is blockchainy… leading to a proliferation of definitions.

The results have been universally more expensive applications with fewer helpful features. I don’t like “blockchain” because everything that touches it gets worse.

[–] antangil@lemmy.world 13 points 3 weeks ago

I bet the fine just offsets the cost of the prosecution, it’s not gonna be some settlement, it’s just “time and costs of the lawyers on our side”. Agree that if it’s meant to be punitive, it’s pretty laughable.

[–] antangil@lemmy.world 26 points 3 weeks ago (4 children)

Nah. Folks are big mad because it’s exactly what we all expected when bezos bought the post. It didn’t immediately slide headlong into the void of bullshit pandering, so we developed a sense of false hope. Now it’s gone, we know it, we’re annoyed, and we’re mad about getting took.

[–] antangil@lemmy.world 1 points 2 months ago

Got it.

Space weather is weather - just like on Earth, it’s subject to so many unknowns and unknowable that reliable predictions are somewhere between really hard and totally impossible.

So - on Earth we don’t try to predict the exact weather that a given building is going to experience before we build it - that’d be super hard. Instead, we look at the rational maximum based on what we have seen and add some on top as a margin of safety… and that’s where we get building codes. Same applies in space - we make some measurements and add a factor of safety to cover our uncertainty. We have the same idea of building standards for pretty much everything except, to some extent, radiation.

The problem is that nobody has really found a workable solution for radiation shielding other than the EM shielding effects of large planetary bodies (see: Earth) or “thick shells of dense mass between the sensitive stuff and the outside.” Dense dumb mass is obviously not a great answer because of the launch cost - some have proposed using water, but you’d need a lot to provide adequate shielding… basically, you need a thick enough shell to match the wavelength of whatever radiation you’re shielding from.

I saw something kinda cool at AIAA Ascend from I think UMich that was proposing to basically pump enough electricity into space that the EM field would generate radiation shielding, but that’s like TRL 0 and electricity is also not always easy to come by.

Anyways, since there’s not a good answer for handling radiation, there’s no “building code” and the level of precision on the radiation level experienced is kinda irrelevant from an engineering standpoint. We can’t effectively protect against any amount, so if it’s >0, we have a problem.

I’d also suggest that from a “routinization” perspective you want a consistent building code, not a precise answer - because weather changes over time.

[–] antangil@lemmy.world 2 points 2 months ago (3 children)

Both things exist, certainly, but I’m not sure how I’d establish a common unit to describe a set of things that are mostly waves but with a few particles thrown in. It’d have to be some kind of total energy flux through a selected region of space for a given time, and it’d be super specific to both the region and the timeframe since a CME event at the wrong time would really skew your results… I guess it could be some kind of time-average? So the thing you’d need is a total annual average energy flux of both EM and particle radiation through a region of interest. Such a thing certainly could (and probably has) been measured, but I don’t think I’ve ever seen it all combined. This is maybe a start? It at least has all the radiation information in one spot.

I’m not sure I understand the value proposition of having that kind of information if someone took the time to do it, but it’s a fun thing to think about.

[–] antangil@lemmy.world 3 points 2 months ago* (last edited 2 months ago) (5 children)

So - there are two sources of radiation we think about. There’s radiation from our local bodies - mostly the Sun. The Sun radiates at least some across the entire electromagnetic spectrum, so the trivial answer to your question is “all radiation exists in space to some extent.” There’s also a general “cosmic radiation background” that is (we think) left over from the big bang. That radiation also spans the entire EM spectrum, but at a different distribution to what our Sun emits.

I’m guessing that the trivial answer of “all of it” isn’t what you want and it might be why you’re struggling to find the info you’re searching. Is there a more specific way to formulate your question?

[–] antangil@lemmy.world 3 points 4 months ago

It’s the odds-on favorite for the next generation of radiation-hardened space computers (HPSC). Potential to be a 25x improvement over current capabilities. Guessing most of the use cases will be niche like that, but who knows.

[–] antangil@lemmy.world 3 points 10 months ago

The Starship concept of operations requires 11 launches for each mission to the moon - one for the vehicle, another 10 to refuel it once it get into earth orbit. Each of these missions have to autonomously dock and perform a cryogenic fuel transfer.

Nobody, and I mean nobody, has shown an operationally-viable in-space cryo transfer. Even doing it on Earth is a fussy thing - cryo transfer was behind two of the Artemis I scrubs, and NASA’s been doing it since Apollo.

Getting one Starship into orbit is an interesting milestone but it’s a long way from what they promised the world they could do… and the clock is ticking.