this post was submitted on 18 Sep 2025
906 points (98.6% liked)

Science Memes

16837 readers
3674 users here now

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don't throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

founded 2 years ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[โ€“] StellarExtract@lemmy.zip 1 points 5 days ago (1 children)

It seems maybe you're actually misunderstanding. As I mentioned above, both you and the other commenter are certainly correct that the surrounding atmosphere (water in your case) exerts force on the objects as they fall, with varying effects depending on object density. However, if you take two objects that have vastly more density than the water (let's say a big tungsten rod and another tungsten rod that has a hollow core), they will drop at approximately the same rate in the water even if their density vs each other varies. The greater the difference of their density versus the density of the medium, the less the effect of the medium. Is there still technically an effect? Sure, but that effect is negligible from a human perceptual perspective.

I understand what you're saying (call it like a 10" 100 pound tungsten ball vs a 5" 50 pound tungsten ball) but your reasoning and logic of being essentially the same are just silly and the math that would dictate when each would land in atmosphere would still line up perfectly (which would be that the heaviest one will hit first). even if it were a 10,000 pound ball and a 5,000 pound ball.