this post was submitted on 14 Sep 2023
5 points (100.0% liked)
Asklemmy
44278 readers
365 users here now
A loosely moderated place to ask open-ended questions
Search asklemmy ๐
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- !lemmy411@lemmy.ca: a community for finding communities
~Icon~ ~by~ ~@Double_A@discuss.tchncs.de~
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
This is fundamentally not true.
Light is made of electromagnetic waves. If you can control the timing of those waves precisely enough, you can add another light with the opposite phase (an inverted wave) that will cancel out the other light.
This is what happens in the famous "double slit experiment". It's also the same principal as noise cancelling headphones albeit with sound pressure waves instead of EM waves.
Scientists have actually cooled atoms very close to absolute zero by shining a laser at them
I said "in most cases". I am aware that it is possible. We're looking at a macroscopic system here though. A microwave, not a couple of atoms in a lab. good luck cooling a couple of atoms in the center of an opaque blob of food with a laser