Ask Science
Ask a science question, get a science answer.
Community Rules
Rule 1: Be respectful and inclusive.
Treat others with respect, and maintain a positive atmosphere.
Rule 2: No harassment, hate speech, bigotry, or trolling.
Avoid any form of harassment, hate speech, bigotry, or offensive behavior.
Rule 3: Engage in constructive discussions.
Contribute to meaningful and constructive discussions that enhance scientific understanding.
Rule 4: No AI-generated answers.
Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.
Rule 5: Follow guidelines and moderators' instructions.
Adhere to community guidelines and comply with instructions given by moderators.
Rule 6: Use appropriate language and tone.
Communicate using suitable language and maintain a professional and respectful tone.
Rule 7: Report violations.
Report any violations of the community rules to the moderators for appropriate action.
Rule 8: Foster a continuous learning environment.
Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.
Rule 9: Source required for answers.
Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.
By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.
We retain the discretion to modify the rules as we deem necessary.
view the rest of the comments
It reduces the effective free length of the spring.
Let's just rearrange the equation for a spring at full compression:
F=-kL
k=-(F/L)
Whether you use one full length spring or two half length springs doesn't matter, the spring constant is unchanged.
By reducing the free length the "dead coils" slightly increase stiffness. They have an impact on the total force at compression.
I think in this image were looking at what, maybe 10% difference in any of those factors? For the life of me i can't imagine this matters terribly much in a pen.
I was talking about the length of the wire. You are talking about the length of the spring.
Yes, the part of the wire coiled up in the dead coils does not contribute to the stiffness of the spring. The stiffness if the spring is determined only by the two sections in between. This is the length L in your equation and not the total length of the spring.
You're probably right.
Right! But those are the same thing as number of coils is the spring length divided by a geometric constant. At free length there is no strain. At compression you reach max strain/torsion. Each coil turn, assuming all are equal, adds equally to the sum of restoring force. Looking at spring free length you're just paying attention to the summed forces of the active coils.
The dead coils contribute negligibly because they would need to impinge the neighboring wire to deform. (Relegated to pure torsion) Which i think is basically what you were saying...