this post was submitted on 28 Jan 2025
867 points (94.4% liked)
memes
11299 readers
2273 users here now
Community rules
1. Be civil
No trolling, bigotry or other insulting / annoying behaviour
2. No politics
This is non-politics community. For political memes please go to !politicalmemes@lemmy.world
3. No recent reposts
Check for reposts when posting a meme, you can only repost after 1 month
4. No bots
No bots without the express approval of the mods or the admins
5. No Spam/Ads
No advertisements or spam. This is an instance rule and the only way to live.
A collection of some classic Lemmy memes for your enjoyment
Sister communities
- !tenforward@lemmy.world : Star Trek memes, chat and shitposts
- !lemmyshitpost@lemmy.world : Lemmy Shitposts, anything and everything goes.
- !linuxmemes@lemmy.world : Linux themed memes
- !comicstrips@lemmy.world : for those who love comic stories.
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Not enough for it to make results diverge. Randomness is added to avoid falling into local maximas in optimization. You should still end in the same global maxima. Models usualy run until their optimization converges.
As stated, if the randomness is big enough that multiple reruns end up with different weights aka optimized for different maximas, the randomization is trash. Anything worth their salt won't have randomization big enough.
So, going back to my initial point, we need the training data to validate the weights. There are ways to check the performance of a model (quite literally, the same algorithm that is used to evaluate weights in training is them used to evaluate the trained weights post training) the performance should be identical up to a very small rounding error if a rerun with the same data and parameters is used.