this post was submitted on 06 Jan 2024
288 points (86.2% liked)
memes
10449 readers
2394 users here now
Community rules
1. Be civil
No trolling, bigotry or other insulting / annoying behaviour
2. No politics
This is non-politics community. For political memes please go to !politicalmemes@lemmy.world
3. No recent reposts
Check for reposts when posting a meme, you can only repost after 1 month
4. No bots
No bots without the express approval of the mods or the admins
5. No Spam/Ads
No advertisements or spam. This is an instance rule and the only way to live.
Sister communities
- !tenforward@lemmy.world : Star Trek memes, chat and shitposts
- !lemmyshitpost@lemmy.world : Lemmy Shitposts, anything and everything goes.
- !linuxmemes@lemmy.world : Linux themed memes
- !comicstrips@lemmy.world : for those who love comic stories.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Correct me if I'm wrong, but isn't it that a simple statement(this is more worth than the other) can't be done, since it isn't stated how big the infinities are(as example if the 1$ infinity is 100 times bigger they are worth the same).
Sorry if you've seen this already, as your comment has just come through. The two sets are the same size, this is clear. This is because they're both countably infinite. There isn't such a thing as different sizes of countably infinite sets. Logic that works for finite sets ("For any finite a and b, there are twice as many integers between a and b as there are even integers between a and b, thus the set of integers is twice the set of even integers") simply does not work for infinite sets ("The set of all integers has the same size as the set of all even integers").
So no, it isn't due to lack of knowledge, as we know logically that the two sets have the exact same size.
OK thanks for your explanation.