this post was submitted on 06 Jan 2024
288 points (86.2% liked)

memes

10449 readers
2394 users here now

Community rules

1. Be civilNo trolling, bigotry or other insulting / annoying behaviour

2. No politicsThis is non-politics community. For political memes please go to !politicalmemes@lemmy.world

3. No recent repostsCheck for reposts when posting a meme, you can only repost after 1 month

4. No botsNo bots without the express approval of the mods or the admins

5. No Spam/AdsNo advertisements or spam. This is an instance rule and the only way to live.

Sister communities

founded 1 year ago
MODERATORS
 

I considered deleting the post, but this seems more cowardly than just admitting I was wrong. But TIL something!

you are viewing a single comment's thread
view the rest of the comments
[–] nova_ad_vitum@lemmy.ca 8 points 10 months ago* (last edited 10 months ago) (1 children)

Logically this makes some sense, but this is fundamentally not how the math around this concept is built. Both of those infinities are the same size because a simple linear scaling operation lets you convert from one to the other, one-to-one.

[–] PotatoKat@lemmy.world 1 points 10 months ago

The ∞ set between 0 and 1 never reaches 1 or 2 therefore the set of real numbers is valued more. You're limiting the value of the set because you're never exceeding a certain number in the count. But all real numbers will (eventually in the infinite) get past 1. Therefore it is higher value.

The example they're trying to say is there are more real numbers between 0 and 1 than there are integers counting 1,2,3... In that case the set between 0 and 1 is larger but since it never reaches 1 it has less value.

Infinity is a concept so you can't treat it like a direct value.