this post was submitted on 11 Jun 2025
669 points (99.3% liked)
Science Memes
15735 readers
2477 users here now
Welcome to c/science_memes @ Mander.xyz!
A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.
Rules
- Don't throw mud. Behave like an intellectual and remember the human.
- Keep it rooted (on topic).
- No spam.
- Infographics welcome, get schooled.
This is a science community. We use the Dawkins definition of meme.
Research Committee
Other Mander Communities
Science and Research
Biology and Life Sciences
- !abiogenesis@mander.xyz
- !animal-behavior@mander.xyz
- !anthropology@mander.xyz
- !arachnology@mander.xyz
- !balconygardening@slrpnk.net
- !biodiversity@mander.xyz
- !biology@mander.xyz
- !biophysics@mander.xyz
- !botany@mander.xyz
- !ecology@mander.xyz
- !entomology@mander.xyz
- !fermentation@mander.xyz
- !herpetology@mander.xyz
- !houseplants@mander.xyz
- !medicine@mander.xyz
- !microscopy@mander.xyz
- !mycology@mander.xyz
- !nudibranchs@mander.xyz
- !nutrition@mander.xyz
- !palaeoecology@mander.xyz
- !palaeontology@mander.xyz
- !photosynthesis@mander.xyz
- !plantid@mander.xyz
- !plants@mander.xyz
- !reptiles and amphibians@mander.xyz
Physical Sciences
- !astronomy@mander.xyz
- !chemistry@mander.xyz
- !earthscience@mander.xyz
- !geography@mander.xyz
- !geospatial@mander.xyz
- !nuclear@mander.xyz
- !physics@mander.xyz
- !quantum-computing@mander.xyz
- !spectroscopy@mander.xyz
Humanities and Social Sciences
Practical and Applied Sciences
- !exercise-and sports-science@mander.xyz
- !gardening@mander.xyz
- !self sufficiency@mander.xyz
- !soilscience@slrpnk.net
- !terrariums@mander.xyz
- !timelapse@mander.xyz
Memes
Miscellaneous
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
When researchers say "observe" they actually mean "measure". And when you're working with sub-atomic particles, "measure" isn't some passive activity. It's an active thing. When you measure small particles you are applying some force upon them, changing them in some way from how they would otherwise act.
Imagine if you were tasked with measuring traffic on the other side of the planet, but you had no cameras. The only tool you had was a gigantic 30 ton, satellite-networked pendulum swinging across the highway. The only way you know if there are cars on the highway is if the pendulum thwacks into one of them. That's quantum particle physics.... I think.
Not exactly. Quantum physics applies no matter how you measure it. The double-slit experiment is an example of this: Photons moving through two slits will form a wave interference pattern on a detector plate, even though the detector doesn't affect the position of the photons beforehand.
It's more like: when you become aware of the results of a quantum measurement, you yourself become a part of the quantum system, and being a part of the system requires measurements to have real values. Whether you should interpret this as a wave-function collapse or branching into multiple parallel universes is up for debate though.
Honest question: what happens afterwards? When we've stopped observing, does it reassemble into it's superpositive form? Are we depleting quantum states somehow?
The double-slit experiment doesn't even require quantum mechanics. It can be explained classically and intuitively.
It is helpful to think of a simpler case, the Mach-Zehnder interferometer, since it demonstrates the same effect but where where space is discretized to just two possible paths the particle can take and end up in, and so the path/position is typically described with just with a single qubit of information: |0⟩ and |1⟩.
You can explain this entirely classical if you stop thinking of photons really as independent objects but just specific values propagating in a field, what are sometimes called modes. If you go to measure a photon and your measuring device registers a |1⟩, this is often interpreted as having detected the photon, but if it measures a |0⟩, this is often interpreted as not detecting a photon, but if the photons are just modes in a field, then |0⟩ does not mean you registered nothing, it means that you indeed measured the field but the field just so happens to have a value of |0⟩ at that location.
Since fields are all-permeating, then describing two possible positions with |0⟩ and |1⟩ is misleading because there would be two modes in both possible positions, and each independently could have a value of |0⟩ or |1⟩, so it would be more accurate to describe the setup with two qubits worth of information, |00⟩, |01⟩, |10⟩, and |11⟩, which would represent a photon being on neither path, one path, the other path, or both paths (which indeed is physically possible in the real-world experiment).
When systems are described with |0⟩ or |1⟩, that is to say, 1 qubit worth of information, that doesn't mean they contain 1 bit of information. They actually contain as much as 3 as there are other bit values on orthogonal axes. You then find that the physical interaction between your measuring device and the mode perturbs one of the values on the orthogonal axis as information is propagating through the system, and this alters the outcome of the experiment.
You can interpret the double-slit experiment in the exact same way, but the math gets a bit more hairy because it deals with continuous position, but the ultimate concept is the same.
A measurement is a kind of physical interaction, and all physical interactions have to be specified by an operator, and not all operators are physically valid. Quantum theory simply doesn't allow you to construct a physically valid operator whereby one system could interact with another to record its properties in a non-perturbing fashion. Any operator you construct to record one of its properties without perturbing it must necessarily perturb its other properties. Specifically, it perturbs any other property within the same noncommuting group.
When the modes propagate from the two slits, your measurement of its position disturbs its momentum, and this random perturbation causes the momenta of the modes that were in phase with each other to longer be in phase. You can imagine two random strings which you don't know what they are but you know they're correlated with each other, so whatever is the values of the first one, whatever they are, they'd be correlated with the second. But then you randomly perturb one of them to randomly distribute its variables, and now they're no longer correlated, and so when they come together and interact, they interact with each other differently.
There's a paper on this here and also a lecture on this here. You don't have to go beyond the visualization or even mathematics of classical fields to understand the double-slit experiment.